
Using I/O on Cray XT
Systems

Lonnie Crosby
lcrosby1@utk.edu

Glenn Brook
glenn-brook@tennessee.edu
NICS Scientific Computing Group

NERSC/OLCF/NICS
Joint Cray XT5 Workshop
February 1 – 3, 2010

Application Performance

• Computation (FLOPs)
– Processor

• Inter-process Communication
–  Interconnect

• Memory
– Capacity and Speed

• I/O
–  File System

2

Cray XT5 Compute Node

Factors which affect I/O.
• I/O is simply data migration.

– Memory Disk
• Layout (contiguous?)

• Size of write/read operations
– Bandwidth vs. Latency

• Number of processes performing I/O
–  I/O Pattern

• Characteristics of the file system
– Distributed or Shared

• Interaction between processes and file
system.

3

Parallelism

• Process level parallelism
– MPI
–  IO Libraries (MPI-IO, HDF5, p-netCDF)

• File System parallelism
– Distributed File System
– Shared Parallel File System

4

Parallelism

5

Processes

Filesystem

Application I/O Patterns

Serial I/O
• Spokesperson

– One process performs I/O.

Parallel I/O
• File per Process

– Each process performs I/O to a single file.

• Single Shared File
– Each process performs I/O to a single file which is shared.

• Multiple Shared Files
– Groups of processes perform I/O to a single shared file.

6

What breaks parallelism in I/O?

• Serial I/O
–  Is limited by the single process which performs I/O.
– Unable to take advantage of process or file system parallelism

• Parallel I/O
–  Is limited by contention for file system resources.
–  I/O pattern is important in determining the extent of contention

7

8

A Bigger Picture: Lustre File System

©2009 Cray Inc.

File Striping: Parallelism for files

9

 .

• lfs setstripe
– Stripe size -s (default: 1M)
– Stripe count -c 5 (default 4, -1 All)
– Stripe index -i 0 (default: -1 round robin)
< file | directory >

File Striping: Physical and Logical Views

10 ©2009 Cray Inc.

11

OSS OSS

A Bigger Picture

• Computational
Nodes
– Kraken: 8253

• Object Storage
Server Nodes
– Kraken: 48 (30 GB/s)

• Object Storage Target
– Kraken: 336 (2.4 PB)

[7.2 TB Disk]

Spokesperson – Serial I/O
•  32 MB per OST (32 MB – 5 GB) and 32 MB Transfer Size

–  Unable to take advantage of file system parallelism
–  Access to multiple disks adds overhead which hurts performance

 Lustre

0

20

40

60

80

100

120

1 2 4 16 32 64 128 160

W
rit

e
(M

B
/s

)

Stripe Count

Single Writer
Write Performance

1 MB Stripe

32 MB Stripe

12

Spokesperson – Serial I/O

 Lustre

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 128

W
rit

e
(M

B
/s

)

Stripe Size (MB)

Single Writer
Transfer vs. Stripe Size

32 MB Transfer

8 MB Transfer

1 MB Transfer

• Single OST, 256 MB File Size
–  Performance can be limited by the process (transfer size) or file system

(stripe size)

13

Single Shared File: File Structure

Lustre

14

Single Shared File: File Structure

Lustre

15

Single Shared File

0

200

400

600

800

1000

1200

1400

1600

1800

2000

32 64

W
rit

e
(M

B
/s

)

Stripe Count

Single Shared File (32 Processes)
1 GB and 2 GB file

1 MB Stripe (Layout #1)

32 MB Stripe (Layout #1)

1 MB Stripe (Layout #2)

Lustre

16

Scalability: File Per Process

• 128 MB per file and a 32 MB Transfer size

0

2000

4000

6000

8000

10000

12000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

W
rit

e
(M

B
/s

)

Processes or Files

File Per Process
Write Performance

1 MB Stripe

32 MB Stripe

17

Scalability: Single Shared File

• 32 MB per process, 32 MB Transfer size and Stripe size

0

1000

2000

3000

4000

5000

6000

7000

8000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

W
rit

e
(M

B
/s

)

Processes

Single Shared File
Write Performance

POSIX

MPIIO

HDF5

POSIX (1 MB Stripe)

18

Scalability

• Serial I/O
–  Is not scalable. Limited by single process which

performs I/O.

• File per Process
–  Limited at large process/file counts by:

• Metadata Operations
• File System Contention

• Single Shared File
–  Limited at large process counts by file system

contention.
–  File striping limitation of 160 OSTs in Lustre

19

Buffered I/O
• Advantages

– Aggregates smaller read/write
operations into larger operations.

– Examples: OS Kernel Buffer,
MPI-IO Collective Buffering

• Disadvantages
– Requires additional memory for

the buffer.
– Can tend to serialize I/O.

• Caution
–  Frequent buffer flushes can

adversely affect performance.

20

Buffer

Standard Output and Error

• Standard Ouput and Error
streams are effectively serial I/O.

• Generally, the MPI launcher will
aggregate these requests.
(Example: mpirun, mpiexec,
aprun, ibrun, etc..)

• Disable debugging messages
when running in production
mode.
–  “Hello, I’m task 32000!”
–  “Task 64000, made it through loop.”

21

 Lustre

Binary Files and Endianess
• Writing a big-endian binary file with compiler

flag byteswapio
File “XXXXXX"  
 Calls #Megabytes #Avg Size  
Open 1  
Write 5918150 23071.28062 4088  
Close 1  
Total 5918152 23071.28062 4088#

• Writing a little-endian binary#
File “XXXXXX"  
 Calls #Megabytes #Avg Size  
Open 1  
Write 350 23071.28062 69120000  
Close 1  
Total 352 23071.28062 69120000#

• Can use more portable file formats such as HDF5,
NetCDF, or MPI-IO.

22

Case Study: Parallel I/O
• A particular code both reads and writes a 377 GB file.

Runs on 6000 cores.
–  Total I/O volume (reads and writes) is 850 GB.
– Utilizes parallel HDF5

• Default Stripe settings: count 4, size 1M, index -1.
–  1800 s run time (~ 30 minutes)

• Stripe settings: count -1, size 1M, index -1.
–  625 s run time (~ 10 minutes)

• Results
–  66% decrease in run time.

23

Lustre

Case Study: Buffered I/O
• A post processing application writes a 1GB file.
•  This occurs from one writer, but occurs in many small write operations.

–  Takes 1080 s (~ 18 minutes) to complete.
•  IOBUF was utilized to intercept these writes

with 64 MB buffers.
–  Takes 4.5 s to complete. A 99.6% reduction in time.

File "ssef_cn_2008052600f000"
 Calls Seconds Megabytes Megabytes/sec Avg Size
Open 1 0.001119
Read 217 0.247026 0.105957 0.428931 512
Write 2083634 1.453222 1017.398927 700.098632 512
Close 1 0.220755
Total 2083853 1.922122 1017.504884 529.365466 512
Sys Read 6 0.655251 384.000000 586.035160 67108864
Sys Write 17 3.848807 1081.145508 280.904052 66686072
Buffers used 4 (256 MB)
Prefetches 6
Preflushes 15

24

Lustre

IOBUF -Beta Library

• module load iobuf/beta
• Relink application with the Cray wrappers (ftn, cc, CC)
• Controlled by environmental variable at runtime.

–  setenv IOBUF_PARAMS ‘*:verbose’
– man iobuf for more information

• Intercepts standard I/O calls. May not operate with the
use of I/O libraries such as netcdf.

25

MPI-IO Usage

• Included in the Cray MPT library.
• Environmental variable used to help MPI-IO optimize I/O

performance.
–  setenv MPICH_MPIIO_HINTS
– man mpi for more information

• If given appropriate information (stripe count, size) can
choose aggregators in collective operations that are
Lustre stripe aligned. (collective buffering).

26

Conclusions

• Serial I/O
–  For a single process, performance is limited by the single I/O stream.
–  For the file-per-process pattern, the limitation is due to simultaneous

metadata operations (file open) at large core counts. Additionally,
increasing contention for file system resources can adversely affect
performance.

• Parallel I/O
–  For a single, shared file, the limitation is due to file system contention at

large core counts. Lustre limitation of 160 OSTs per file.
–  MPI-IO can be utilized to minimize file system contention at large core

counts by utilizing collective buffering and appropriate hints.

•  Lustre
–  Appropriate stripe settings should be utilized to minimize file system

contention.

27

Subsetting I/O
• At large core counts, I/O performance can be hindered

–  by the collection of metadata operations (File-per-process) or
–  by file system contention (Single-shared-file).

• One solution is to use a subset of application processes
to perform I/O. This limits
–  the number of files (File-per-process) or
–  the number of processes accessing file system resources

(Single-shared-file).

• If you can not implement a subsetting approach, try to
limit the number of synchronous file opens to reduce
the number of requests simultaneously hitting the
metadata server.

28

I/O Best Practices

• Small files (< 1 MB to 1 GB) that are accessed by a
single process (serial I/O or file-per-process) should be
set to a stripe count of 1.

• Medium sized files (> 1 GB) that are accessed by a
single process (serial I/O or file-per-process) should be
set to utilize a stripe count of no more than 4 (default).

• Large files (>> 1 GB) should be set to a stripe count that
would allow the file to be written to the Lustre file
system. The stripe count should be adjusted to a value
larger than 4 (default). Such files should never be
accessed by a serial I/O or file-per-process I/O pattern.

29

I/O Best Practices (continued)

• Single shared files should have a stripe count equal to
the number of processes. If the number of processes
accessing the file is greater than 160 then the stripe
count should be set to -1 (max 160).

• Create directories with different stripe settings to
control the stripping pattern of included files. Use the
“lfs setstripe –c <count> -s <size> <directory>”
command to assign a striping pattern to a directory.

• Limit the number of files within a single directory by
incorporating additional directory structure (e.g. sqrt(N)
directories of sqrt(N) files). Set the Lustre stripe count
of such directories which contain many small files to 1.

30

I/O Best Practices (continued)
• The file-per-process I/O pattern is not scalable to large

core counts. Metadata operations become restrictive at
process/file counts larger than 5000. This limit is lower
if files have a stripe count greater than 1. Limit the
number of files by selecting a subset of processes to
conduct I/O or changing to a different I/O pattern.

• The single, shared file I/O pattern shows decreasing
performance improvements at large core counts. File
system contention limits performance at process
counts larger than 5000. Limit the number of processes
accessing a shared file by selecting a subset to conduct
I/O, utilize additional shared files, or utilize I/O libraries
such as MPI-IO (collective buffering).

31

I/O Best Practices (continued)
• Increase the size of I/O write operations to improve

performance and align them with the Lustre striping.
• Avoid excessive use of stdout and stderr I/O streams

(debugging messages).
• Avoid the use of byteswapio and similar compiler flags.
• Set the Lustre stripe size to allow for better stripe

alignment with parallel I/O. Avoid situations in which
processes communicate with all utilized OSTs. Take
into account the shared file layout, the number of
processes, and the size of I/O operations.

• The Lustre stripe index should not be set to a value
other than -1.

32

I/O Best Practices (continued)
(from the NCCS website)
• Open files read-only whenever possible.

–  If the access time on the file does not need to be updated, the
open flags should be O_RDONLY | O_NOATIME.

–  If this file is opened by all files in the group, the master
process (rank 0) should open it O_RDONLY with the remaining
processes (rank > 0) opening it O_RDONLY | O_NOATIME.

• Read/stat small, shared files from a single task and
broadcast the data to the remaining tasks.
–  Instead of making a read/stat (and open) request per task, we

are making only 1.
–  The broadcast uses a fanout which reduces network traffic by

allowing the SeaStar routers of intermediate nodes to process
less data.

33

References
•  Lustre File System – White Paper October 2008

–  http://www.sun.com/software/products/lustre/docs/lustrefilesystem_wp.pdf

•  Introduction to HDF5
–  http://www.hdfgroup.org/HDF5/doc/H5.intro.html

•  The NetCDF Tutorial
–  http://www.unidata.ucar.edu/software/netcdf/docs/netcdf-tutorial.pdf

• NICS I/O Tips
–  http://www.nics.tennessee.edu/io-tips

• NCCS Spider (Lustre) Best Practices
–  http://www.nccs.gov/user-support/general-support/file-systems/spider/

34

